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ROLAND WALKER

1. Introduction

Vladimir Vapnik and Alexey Chervonenkis proved their eponymous theorem in
1968. The original Russian proof was published in 1971 and then translated to
English by B. Seckler later that year. The English translation was most recently
reprinted in 2015 [4].

These notes, which provide a relatively self-contained proof of the VC Theorem,
assume the reader has some comfort with the basics of real analysis (e.g., Chapters
1 and 2 of [2]) but little or no background in probability theory. In addition to the
original paper, we used Chapter 6 and Appendix B of [3] as a reference for the proof
of the VC theorem and Appendix A of [1] as a reference for the proof of Chernoff’s
theorem.

2. Products of σ-algebras

Let I be a nonempty set, and let (Xi, Ai)i∈I be a family of measurable spaces
(i.e., each Xi is a nonempty set and each Ai is a σ-algebra on Xi).

Definition 2.1. The product
⊗

i∈I Ai is the σ-algebra on
∏

i∈I Xi given by⊗
i∈I

Ai = σ
({

π−1
i (Ai) : i ∈ I, Ai ∈ Ai

})
.

Moreover, if I = {0, . . . , n − 1} for some n ≥ 2, we often write A0 ⊗ · · · ⊗ An−1 for⊗
i∈I Ai just as we often write X0 × · · · × Xn−1 for

∏
i∈I Xi.

Lemma 2.2. If I is countable, then⊗
i∈I

Ai = σ

({∏
i∈I

Ai : Ai ∈ Ai

})
.

Proof. A σ-algebra is closed under taking countable intersections. □

Lemma 2.3. If (Ei)i∈I is such that each Ai = σ(Ei), then⊗
i∈I

Ai = σ
({

π−1
i (Ei) : i ∈ I, Ei ∈ Ei

})
.

If, in addition, I is countable, then⊗
i∈I

Ai = σ

({∏
i∈I

Ei : Ei ∈ Ei

})
.

1
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Lemma 2.4. If I = J ⊔ K, with both J and K nonempty, then

⊗
i∈I

Ai =

⊗
j∈J

Aj

⊗

(⊗
k∈K

Ak

)
. (2.1)

Proof. By Lemma 2.3, the right-hand side of (2.1) is the σ-algebra generated by
sets of the form π−1

j (Aj)∩π−1
k (Ak) where j ∈ J , k ∈ K, Aj ∈ Aj , and Ak ∈ Ak. □

Corollary 2.5. The operator ⊗ is associative.

3. Product Measures

Let n ≥ 2, and let (Xi, Ai, µi)i<n be a family of measure spaces; i.e., each
µi : Ai → [0, ∞] is a measure (see [2, p. 24]) on the measurable space (Xi, Ai). Let
R denote the collection of rectangular sets in A0 ⊗ · · · ⊗ An−1; i.e.,

R = {A0 × · · · × An−1 : Ai ∈ Ai}.

It follows that R is an elementary family (see [2, p. 23]), so the set

F =

⊔
j<m

Rj : 1 ≤ m < ω, Rj ∈ R

 .

consisting of all finite disjoint unions of rectangles is an algebra [2, Proposition 1.7].
Let ρ : R → [0, ∞] be defined by

A0 × · · · × An−1 7→ µ0(A0) · · · µn−1(An−1).

Claim 3.1. Suppose (Sj)j<ω ⊆ R is a family of pairwise disjoint rectangles and
R =

⊔
j<ω Sj. If R ∈ R, then ρ(R) =

∑
j<ω ρ(Sj).

Proof. Suppose R = A0 × · · · × An−1 and each Sj = Bj
0 × · · · × Bj

n−1 with each Ai

and Bj
i in Ai. Since

1A0(x0) · · · 1An−1(xn−1) = 1A0×···×An−1(x0, . . . , xn−1)

=
∑
j<ω

1Bj
0×···×Bj

n−1
(x0, . . . , xn−1)

=
∑
j<ω

1Bj
0
(x0) · · · 1Bj

n−1
(xn−1)

for all (x0, . . . , xn−1) ∈ X0 × · · · × Xn−1, [2, Theorem 2.15] asserts that

µ0(A0) · · ·µn−1(An−1)

=
∫

Xn−1

· · ·
∫

X0

1A0(x0) · · · 1An−1(xn−1) dµ0(x0) · · · dµn−1(xn−1)

=
∑
j<ω

∫
Xn−1

· · ·
∫

X0

1Bj
0
(x0) · · · 1Bj

n−1
(xn−1) dµ0(x0) · · · dµn−1(xn−1)

=
∑
j<ω

µ0(Bj
0) · · · µn−1(Bj

n−1).

□



NOTES ON THE VAPNIK–CHERVONENKIS THEOREM: BACKGROUND AND PROOF 3

Let ν : F → [0, ∞] be defined by

ν

⊔
j<m

Rj

 =
∑
j<m

ρ(Rj).

In order to show that ν is well-defined, suppose that
⊔

j<m Rj and
⊔

k<m Sk describe
the same set in F . For each j < m, suppose Rj = Aj

0 × · · · × Aj
n−1 and Sk =

Bk
0 × · · · × Bk

n−1 with each Aj
i and Bk

i in Ai. By Claim 3.1, we have

ν

⊔
j<m

Rj

 =
∑
j<m

µ0

(
Aj

0

)
· · · µn−1

(
Aj

n−1

)
=
∑

j,k<m

µ0

(
Aj

0 ∩ Bk
0

)
· · · µn−1

(
Aj

n−1 ∩ Bk
n−1

)
=
∑
k<m

µ0
(
Bk

0
)

· · · µn−1
(
Bk

n−1
)

= ν

( ⊔
k<m

Sk

)
.

Next, we show that ν is a premeasure on F (see [2, p.30]). Let
⊔

j<m Rj ∈ F , and
let
(⊔

k<mℓ
Sℓ

k

)
ℓ<ω

⊆ F be pairwise disjoint. Suppose
⊔

j<m Rj =
⊔

ℓ<ω

(⊔
k<mℓ

Sℓ
k

)
.

By Claim 3.1, it follows that

ν

⊔
j<m

Rj

 =
∑
j<m

ρ(Rj)

=
∑
j<m

∑
ℓ<ω

∑
k<mℓ

ρ
(
Rj ∩ Sℓ

k

)
=
∑
ℓ<ω

∑
k<mℓ

∑
j<m

ρ
(
Rj ∩ Sℓ

k

)
=
∑
ℓ<ω

∑
k<mℓ

ρ
(
Sℓ

k

)
=
∑
ℓ<ω

ν

( ⊔
k<mℓ

Sℓ
k

)
.

Let ν∗ be the outer measure associated with ν; i.e.,
ν∗ : P(X0 × · · · × Xn−1) → [0, ∞]

where

ν∗(A) = inf

∑
j<ω

ν(Fj) : Fj ∈ F , A ⊆
⋃

j<ω

Fj

 .

Definition 3.2. The product measure µ0 × · · · × µn−1 is the restriction of ν∗ to
A0 ⊗ · · · ⊗ An−1.
By [2, Proposition 1.13], this product is indeed a measure which extends ρ. If, in
addition, each µi is σ-finite, then [2, Proposition 1.14] implies that the product is
the unique measure extending ρ to A0 ⊗ · · · ⊗ An−1.
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Lemma 3.3. If each µi is σ-finite, then the product µ0 × · · · × µn−1 is associative.

Proof. Suppose I ⊔ J = {0, . . . , n − 1} where both I and J are nonempty. Let
µI =

∏
i∈I µi and µJ =

∏
j∈J µj . It follows that (µI × µJ)⇂R= ρ. □

4. Pushforwards

Suppose (X, A) and (Y, B) are measurable spaces and f : X → Y is an (A, B)-
measurable function.

Definition 4.1. If µ : A → [0, ∞] is a measure, then we call µ ◦ f−1 : B → [0, ∞]
its pushforward by f .

Claim 4.2. The pushforward µ ◦ f−1 is a measure.

Proof. Notice that µ ◦ f−1(∅) = µ(∅) = 0. Suppose (Bi : i < ω) ⊆ B is pairwise
disjoint. It follows that (f−1(Bi) : i < ω) ⊆ A is also pairwise disjoint, so

µ ◦ f−1
(⋃

Bi

)
= µ

(⋃
f−1(Bi)

)
=
∑

µ ◦ f−1(Bi).

□

5. Probability Spaces

Definition 5.1. A probability space is a measure space (Ω, A, P ) with P (Ω) = 1.

Definition 5.2. If (Ω, A, P ) is a probability space, then the P -measurable sets
(i.e., the elements of A) are called events.

6. Random Elements and Variables

Let (Ω, A, P ) be a probability space.

Definition 6.1. A random element of a measurable space (Ψ, B) is an (A, B)-
measurable function X : Ω → Ψ. Furthermore, if Ψ = R and B = B(R), then we
call X a random variable.

When describing events using preimages of random elements, we often use

[X ∈ B] for {ω ∈ Ω : X(ω) ∈ B},

[X > r] for {ω ∈ Ω : X(ω) > r},

etc.

This abbreviation practice is common in the literature of probability theory. As an
aid to the reader, we set off such abbreviations with square brackets rather than
braces.

Definition 6.2. We say that a collection of random elements X0, . . . , Xn−1 of
measurable spaces (Ψ0, B0), . . . , (Ψn−1, Bn−1), respectively, are mutually indepen-
dent iff: for all (B0, . . . , Bn−1) ∈ B0 × · · · × Bn−1, we have

P [X0 ∈ B0, . . . , Xn−1 ∈ Bn−1] = P [X0 ∈ B0] · · · P [Xn−1 ∈ Bn−1].

Definition 6.3. If X is a random element of (Ψ, B), then the probability distribution
of X is the pushforward P ◦ X−1 : B → [0, 1].
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Lemma 6.4. A collection of random elements X0, . . . , Xn−1 of measurable spaces
(Ψ0, B0), . . . , (Ψn−1, Bn−1), respectively, is mutually independent if and only if the
probability distribution of the random element X̄ of

(Ψ0 × · · · × Ψn−1, B0 ⊗ · · · ⊗ Bn−1)
given by

X̄(ω) = (X0(ω), . . . , Xn−1(ω))
is the product µ0 ×· · ·×µn−1 where each µi = P ◦X−1

i is the probability distribution
of Xi.

Proof. Let (B0, . . . , Bn−1) ∈ B0 ⊗ · · · ⊗ Bn−1. Since
X̄−1(B0 × · · · × Bn−1) = X−1

0 (B0) ∩ · · · ∩ X−1
n−1(Bn−1) ∈ A

and since preimages preserve complements and arbitrary unions, it follows that X̄
is (A, B0 ⊗ · · · ⊗ Bn−1)-measurable.

(⇒) Notice that
P ◦ X̄−1(B0 × · · · × Bn−1) = P [X0 ∈ B0, . . . , Xn−1 ∈ Bn−1]

= P [X0 ∈ B0] · · · P [Xn−1 ∈ Bn−1]
= µ0(B0) · · · µn−1(Bn−1).

Since each µi is finite, the product µ0 × · · · × µn−1 is the unique measure on
B0 ⊗ · · · ⊗ Bn−1 with this property for all rectangles.

(⇐) Notice that
P [X0 ∈ B0, . . . , Xn−1 ∈ Bn−1] = P ◦ X̄−1(B0 × · · · × Bn−1)

= µ0 × · · · × µn−1(B0 × · · · × Bn−1)
= µ0(B0) · · · µn−1(Bn−1)
= P [x0 ∈ B0] · · · P [xn−1 ∈ Bn−1].

□

Definition 6.5. If X is a random variable, its expected value is given by

E(X) =
∫

Ω
X dP

provided the integral is well-defined (i.e., either
∫

Ω X+ dP or
∫

Ω X− dP is finite).

For the remainder, we tacitly assume all random variables have well-
defined expectations.

Definition 6.6. Given a random variable X : Ω → [0, ∞), for each n < ω, let ϕX
n

denote the simple function ∑
i<n2

i

n
1X−1(Bi),

where each
Bi =

[
i

n
,

i + 1
n

)
.

Lemma 6.7. If X and Y are mutually independent random variables, then for all
m, n < ω, we have

E
(
ϕX

mϕY
n

)
= E

(
ϕX

m

)
E
(
ϕY

n

)
.
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Proof. The result follows since for all r, s ∈ R and all A, B ∈ B(R), we have
E
(
r1X−1(A) · s1Y −1(B)

)
= rsE

(
1X−1(A)∩Y −1(B)

)
= rsP

(
X−1(A) ∩ Y −1(B)

)
= rP

(
X−1(A)

)
· sP

(
Y −1(B)

)
= E

(
r1X−1(A)

)
· E
(
s1Y −1(B)

)
.

□

Lemma 6.8. If X0, . . . , Xn−1 are mutually independent random variables, then
E(X0 · · · Xn−1) = E(X0) · · · E(Xn−1).
Proof. We proceed by induction on n. Suppose the lemma holds for n ≥ 1. Given
mutually independent random variables X0, . . . , Xn−1, Y , let X = X0 · · · Xn−1.
Lemma 6.4 implies that X and Y are mutually independent.

Suppose that X and Y are non-negative. The Monotone Convergence Theorem
[2, Theorem 2.14] asserts that

E
(
ϕX

i

)
→ E(X), E

(
ϕY

i

)
→ E(Y ), and E

(
ϕX

i ϕY
i

)
→ E(XY ),

so by Lemma 6.7, we have E(XY ) = E(X)E(Y ).
The general case follows since
E(XY ) = E((X+ − X−)(Y + − Y −))

= E(X+Y +) − E(X+Y −) − E(X−Y +) + E(X−Y −)
= E(X+)E(Y +) − E(X+)E(Y −) − E(X−)E(Y +) + E(X−)E(Y −)
= (E(X+) − E(X−))(E(Y +) − E(Y −))
= E(X)E(Y ).

□

Definition 6.9. If X is a random variable, its variance is given by
V (X) = E((X − E(X))2).

Lemma 6.10. If X0, . . . , Xn−1 are mutually independent random variables, then
V (X0 + · · · + Xn−1) = V (X0) + · · · + V (Xn−1).

Proof. We proceed by induction on n. Suppose the lemma holds for n ≥ 1. Given
mutually independent random variables X0, . . . , Xn−1, Y , let X = X0 · · · Xn−1.
Lemma 6.4 implies that X and Y are mutually independent, so we have

V (X + Y ) = E
(
(X + Y − E(X + Y ))2)

= E
(
X2 + 2XY + Y 2 − 2(X + Y )E(X + Y ) + E(X + Y )2)

= E(X2 + 2XY + Y 2 − 2XE(X) − 2XE(Y ) − 2Y E(X)
− 2Y E(Y ) + E(X)2 + 2E(X)E(Y ) + E(Y )2)

= E(X2 − 2XE(X) + E(X)2) + E(Y 2 − 2Y E(Y ) + E(Y )2)
+ 2E(XY − XE(Y ) − Y E(X) + E(X)E(Y ))

= V (X) + V (Y ) + 2(E(X)E(Y ) − E(X)E(Y ) − E(Y )E(X)
+ E(X)E(Y ))

= V (X) + V (Y ).
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□

7. Average Measures

Definition 7.1. Given a measurable space (X, A) and b0, . . . , bn−1 ∈ X, let Avb̄

denote the average measure given by

Avb̄(A) = 1
n

∑
i<n

1{bi}(A)

for all A ∈ A.

8. Chernoff’s Bound

Let (Ω, A, P ) be a probability space, and let X : Ω → R≥0 be a random variable.

Lemma 8.1. Given r ≥ 0 and s > 0, if P [X > r] ≥ s, then E(X) > rs.

Proof. Since
[X > r] =

⋃
δ>0

[X > r + δ],

there are δ, ε > 0 such that P [X > r + δ] > ε, so

E(X) ≥ rP [X > r] + δP [X > r + δ] ≥ rs + δε.

□

Lemma 8.2. (Markov’s Inequality) For r > 0, we have

P [X > rE(X)] <
1
r

.

Proof. Assume that P [X > rE(X)] ≥ 1/r for some r > 0. The previous lemma
implies that E(X) > rE(X) · 1/r = E(X), a contradiction. □

Lemma 8.3. If x > 0, then cosh x ≤ ex2/2.

Proof. Let

f(x) = cosh x = ex + e−x

2 .

It follows that
f ′(x) = sinh x = ex − e−x

2 .

Furthermore, we have

f (k)(x) =
{

cosh x if k even,

sinh x if k odd,

so Taylor’s theorem asserts that

f(x) =
∞∑

k=0

xk

k! f (k)(0) =
∞∑

k=0

xk

k!

{
1
2 if k even,

0 if k odd

since for all y ∈ (0, x), the remainder vanishes, i.e.,

Rf (k) = xk

k! f (k)(y) ≤ xk

k! f (k)(x) → 0.
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Let g(x) = ex2/2. By induction, g(k)(x) = pk(x)g(x) for some

pk(x) = ank
xnk + · · · + a0

with nonnegative integer coefficients such that
• a0 > 0 if k is even,
• a1 > 0 if k is odd, and
• ai = 0 if i ̸≡ k (mod 2).

It follows that

g(k)(0) ≥

{
1 if k even,

0 if k odd.

For all n ≥ 1, Taylor’s Theorem asserts that

g(x) =
n−1∑
k=0

xk

k! g(k)(0) + Rg(n)

with remainder
Rg(n) = xn

n! f (n)(y)

for some y ∈ (0, x). Since each remainder is positive, we have shown that f(x) ≤
g(x) for all x > 0. □

Theorem 8.4. (Chernoff’s Bound) Given ε > 0, if σo, . . . , σn−1 are mutually
independent random variables, each with probability distribution Av−1,1, then

P

[∑
i<n

σi > ε

]
< e−ε2/2n.

Proof. By Lemma 8.3, we have

E
(
eδσi

)
= eδ + e−δ

2 = cosh(δ) ≤ eδ2/2

for each i < n, and since expectations multiply (Lemma 6.8), it follows that

E
(
eδσ0+···+δσn−1

)
≤ enδ2/2.

Now we can apply Markov’s inequality (Lemma 8.2) to obtain

P

[∑
i<n

σi > ε

]
= P

[
eδσ0+···+δσn−1 > eδε

]
<

E
(
eδσ0+···+δσn−1

)
eδε

≤ enδ2/2

eδε
.

This bound becomes minimal when δ = ε/n.
□

9. The Weak Law of Large Numbers

Let (Ω, A, P ) be a probability space.

Lemma 9.1 (Chevyshev’s Inequality). Given ε > 0, if X is a random variable,
then

P (|X − E(X)| ≥ ε) ≤ V (X)
ε2 .

Proof. See [3, Proposition B.3]. □
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Proposition 9.2 (The Weak Law of Large Numbers). Given ε > 0, if A ∈ A, then
for all n ≥ 1, we have

P n
({

b̄ ∈ Ωn : |Avb̄(A) − P (A)| ≥ ε
})

≤ 1
4nε2 .

Proof. See [3, Proposition B.4]. □

10. The Vapnik–Chervonenkis Theorem

Let X be a nonempty set, A ⊆ P(X) a σ-algebra, and µ : A → [0, 1] a proba-
bility measure. Fix n < ω, and let x0, . . . , xn−1 be mutually independent random
elements of (X, A) each with probability distribution µ.

Theorem 10.1 (The Vapnik–Chervonenkis Theorem). If ε > 0 and S is a nonempty
countable collection of subsets from A, then

µn

[
sup
S∈S

|Avx̄(S) − µ(S)| > ε

]
≤ 8πS(n)e−nε2/32. (10.1)

Proof. For each S ∈ S, the function

x̄ 7→ Avx̄(S) − µ(S) = 1
n

∑
i<n

1S(xi) − µ(S)

is measurable since S ∈ A. Furthermore, since S is countable, the function
x̄ 7→ sup

S∈S
|Avx̄(S) − µ(S)|

is also measurable [2, Proposition 2.7], so the inequality (10.1) is well-defined.
Let y0, . . . , yn−1 be random elements of (X, A) each with probability distribution

µ, and let σ0, . . . , σn−1 be random variables each with probability distribution ν =
Av−1,1. Suppose all the random elements and variables named above are mutually
independent.

For an explicit construction, consider the set Ω = X2n × {−1, 1}n. Let each xi

be πi : Ω → X, each yi be πn+i : Ω → X, and each σi be π2n+i : Ω → R. Let

F =
⊗
i<2n

A ⊗
⊗
i<n

P({−1, 1})

and P : F → [0, 1] be the probability measure determined by

P

(∏
i<2n

Ai ×
∏
i<n

Bi

)
=
∏

i<2n

µ(Ai) ·
∏
i<n

|Bi|
2

for rectangular sets where each Ai ∈ A and each Bi ⊆ {−1, 1}. This yields a prob-
ability space (Ω, F , P ) where all the previously named random variables/elements
are mutually independent and possess the desired distributions.

For each i < n and S ∈ S, let
fi(S) = 1S(xi) − 1S(yi)

and
gi(S) = σi · fi(S).

Notice that
P [fi(S) = 1] = P [xi ∈ S, yi /∈ S] = µ(S) · (1 − µ(S))
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and

P [gi(S) = 1] = P [σi = 1, xi ∈ S, yi /∈ S] + P [σi = −1, xi /∈ S, yi ∈ S]

= 1
2 · µ(S) · (1 − µ(S)) + 1

2 · (1 − µ(S)) · µ(S)

= µ(S) · (1 − µ(S)).

Similarly, we have

P [fi(S) = −1] = P [gi(S) = −1] = µ(S) · (1 − µ(S))

and
P [fi(S) = 0] = P [gi(S) = 0] = 1 − 2µ(S) · (1 − µ(S)).

Notice that for fixed S ∈ S, if we let each hi be either fi or gi, then the variables
h0(S), . . . , hn−1(S) are mutually independent. However, it is not true in general
that fi(S) and gi(S) are mutually independent since both depend on xi and yi.
Explicitly, we have

P [fi(S) = 1, gi(S) = 1] = P [σi = 1, xi ∈ S, yi /∈ S]

= 1
2µ(S) · (1 − µ(S))

and
P [fi(S) = 1] · P [gi(S) = 1] = µ(S)2 · (1 − µ(S))2,

so fi(S) and gi(S) are mutually independent if and only if µ(S) = 0 or 1.

Consider the map F : Ω → Ω defined by

F (a0, . . . , an−1, b0, . . . , bn−1, e0, . . . , en−1)
= (c0, . . . , cn−1, d0, . . . , dn−1, e0, . . . , en−1)

where each

(ci, di) =
{

(ai, bi) ei = 1
(bi, ai) ei = −1.

Notice that F is its own inverse and, therefore, a bijection. Given a rectangular set

R =
∏
i<n

Ai ×
∏
i<n

Bi ×
∏
i<n

Ei ∈ F ,

we have

P (R) =
∑

ē ∈ E0×···×En−1

P

[∧
i<n

xi ∈ Ai,
∧
i<n

yi ∈ Bi,
∧
i<n

σi = ei

]

=
∑

ē ∈ E0×···×En−1

P

[∧
i<n

(ei = 1 → xi ∈ Ai ∧ yi ∈ Bi),

∧
i<n

(ei = −1 → xi ∈ Bi ∧ yi ∈ Ai),
∧
i<n

σi = ei

]
= P (F (R)).
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Since P is a product measure, which is the restriction of an outer measure (see
Definition 3.2), it follows that F is measure preserving. Furthermore, since an
elementary event (ā, b̄, ē) is contained in[

sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

fi(S)

∣∣∣∣∣ >
ε

2

]
(10.2)

if and only if F (ā, b̄, ē) is contained in[
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

gi(S)

∣∣∣∣∣ >
ε

2

]
, (10.3)

events (10.2) and (10.3) have the same probability.

Let D = [supS∈S |Avx̄(S) − Avȳ(S)| > ε/2]. We can use the result of the previous
paragraph to conclude that

P (D) = P

[
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

fi(S)

∣∣∣∣∣ >
ε

2

]

= P

[
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

gi(S)

∣∣∣∣∣ >
ε

2

]

≤ P

([
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

σi · 1S(xi)

∣∣∣∣∣ >
ε

4

]
∪

[
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

σi · 1S(yi)

∣∣∣∣∣ >
ε

4

])
(10.4)

≤ 2P

[
sup
S∈S

∣∣∣∣∣ 1n ∑
i<n

σi · 1S(xi)

∣∣∣∣∣ >
ε

4

]
(10.5)

where we obtain (10.4) since∣∣∣∣∣∑
i<n

σi · (1S(xi) − 1S(yi))

∣∣∣∣∣ =

∣∣∣∣∣∑
i<n

σi · 1S(xi) −
∑
i<n

σi · 1S(yi))

∣∣∣∣∣
≤

∣∣∣∣∣∑
i<n

σi · 1S(xi)

∣∣∣∣∣+

∣∣∣∣∣∑
i<n

σi · 1S(yi))

∣∣∣∣∣
and we obtain (10.5) by subadditivity.

Let

h(S) =

∣∣∣∣∣ 1n ∑
i<n

σi · 1S(xi)

∣∣∣∣∣ .
For each ā ∈ Xn, there is a subset Sā ⊆ S of size at most πS(n) such that[

sup
S∈S

h(S) >
ε

4 , x̄ = ā

]
=
⋃

S∈S

[
h(S) >

ε

4 , x̄ = ā
]

=
⋃

S∈Sā

[
h(S) >

ε

4 , x̄ = ā
]

,

and for each S ∈ Sā, Chernoff’s Bound (Theorem 8.4) asserts that

νn
[
h(S) >

ε

4 , x̄ = ā
]

< 2e−nε2/32.
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It follows that

νn

[
sup
S∈S

h(S) >
ε

4 , x̄ = ā

]
≤ πS(n) · νn

[
h(S) >

ε

4 , x̄ = ā
]

< 2πS(n)e−nε2/32.

Let C = [supS∈S h(S) > ε/4]. Continuing from (10.5), we have

P (D) ≤ 2P (C)

= 2
∫

Ω
1C dP

= 2
∫

Xn

∫
Xn

∫
{−1,1}n

1C dσ̄ dȳ dx̄

≤ 2
∫

Xn

∫
Xn

2πS(n)e−nε2/32 dȳ dx̄

= 4πS(n)e−nε2/32.

For every ā ∈ Xn, let

Bā =
{

b̄ ∈ Xn : sup
S∈S

|Avā(S) − Avb̄(S)| >
ε

2

}
.

Let
A =

{
ā ∈ Xn : µn(Bā) ≥ 1

2

}
.

Looking ahead to (10.6), we see that the function x̄ 7→ µn(Bx̄) is measurable by
Tonelli [2, Theorem 2.37], so A is µn-measurable. We now have

P (D) =
∫

Ω
1D dP

=
∫

Xn

∫
Xn

∫
{−1,1}n

1D dσ̄ dȳ dx̄

≥
∫

A

∫
Xn

1D dȳ dx̄

=
∫

A

µn(Bx̄) dx̄ (10.6)

≥ 1
2µn(A),

so
µn(A) ≤ 2P (D) = 8πS(n)e−nε2/32. (10.7)

Notice that the right-hand side of (10.7) is the same as the right-hand side of (10.1),
so our proof will be complete if we can show{

ā ∈ Xn : sup
S∈S

|Avā(S) − µ(S)| > ε

}
⊆ A.

Given ā ∈ Ac, it follows that µn(Bc
ā) > 1/2. Let S ∈ S and

B =
{

b̄ ∈ Xn : |Avb̄(S) − µ(S)| >
ε

2

}
.
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The Weak Law of Large Numbers (Proposition 9.2) implies that

µn(B) ≤ 1
nε2 .

Our theorem is vacuously true if the right-hand side of (10.1) is at least 1, so we
may assume n ≥ 2/ε2. It follows that Bc ∩ Bc

ā is nonempty. Furthermore, for any
b̄ ∈ Bc ∩ Bc

ā, we have
|Avā(S) − Avb̄(S)| + |Avb̄(S) − µ(S)| ≤ ε,

so we conclude that
|Avā(S) − µ(S)| ≤ ε.

□
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